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ABSTRACT

In this paper we consider a problem of simulation of avionics
models with heterogeneously specified behaviours of com-
ponents. In particular, we consider a situation when some
software components of a model are specified by a program
code of ARINC653 partitions but the rest of a model is de-
fined in a very abstract way. One approach of behavioural
and time analysis of such models is described in this paper.

1. INTRODUCTION
In the paper we discuss issues related to early validation

of avionics and other safety-critical control systems. The
problem is important because the cost of mistakes rises ex-
ponentially during the development.

One of the ways to manage with rising complexity of mod-
ern control systems (used in aviation, transport, medicine,
etc.) is modelling them before implementation to perform
validation and verification checks.

Different aspects of a system can be represented in differ-
ent models. For example, one model can be used for analysis
of the power consumption of hardware and another model
can be used for representation of data flows in a system. We
focus on behavioural characteristics of control systems.

To be able to check such kind of characteristics on a model,
it should be represented with a modelling languages con-
taining architecture and behaviour definition available for
automated analysis. Such models can be used for anal-
ysis of behavioural characteristics of the modelled system
during virtual integration of the whole system from smaller
parts. Languages that are applicable to automated checking
and analysis need to be formal enough to be interpreted by
tools [7].

Analysis of such models can be dynamic and static, i.e.
involving or not some kind of execution of a model. Formal
methods and model-checking of different behavioural and
temporal properties are static methods of analysis; simula-
tion of behavioural models is a dynamic method.

1.1 Different abstraction levels
Models of complex systems can be developed by indepen-

dent groups of people. Developers can use different sources
for parts of a single model like projects requirements and
documentation, industry standards, legacy developments and
etc.

That is why different parts of models can have different
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level of abstraction, readiness and precision. Some parts
of models can be developed fully (for example, in case of
reusing them from previous projects), some of them can be
at the beginning of development.

For example, for avionics systems, already developed soft-
ware applications can be represented as existing ARINC653
[1] partitions, and other applications’ behaviour is given as
abstract behaviour definition, like finite state machines and
other transitions systems.

We will address to models containing parts with com-
pletely different level of abstraction (in particular, talking
about behaviours) as heterogeneous models.

Obviously we can manage with such heterogeneous models
by modelling existing ARINC653 partitions with some ab-
stract behaviour definitions. But it seems to be very costly
and it is a potential flaw because of potential errors that
may be introduced at this step. That is why, it would be
better to support analysis of heterogeneous models.

1.2 Models reuse
Models appearing on early design stages of a complex

control system can be reused after (partial) development
of some of software components for analysis of the system.

We can consider not only an application-local correctness
but the level of the whole system which a particular appli-
cation influences on. In this case additional value can be
achieved with usage of architecture models during analysis.

The system architecture model can contain system-wide
characteristics. For example, we can consider time of pass-
ing of some data through the model, in particular from some
device though decision-taking control application to an ac-
tuator. At the architecture design level, we were having
some requirements on this property. After implementation
of a control application we still are interested whether this
property lies in appropriate bounds. We can perform model
analysis involving the implemented application (i.e. a het-
erogeneous model) to see whether this system-wide property
still holds.

We can have an additional value of reusing of architecture
model in case when we need to estimate or optimize several
properties of a system. This can been done by similar anal-
ysis of heterogeneous model performed for optimization, not
for checking.

For example, system developer is free to configure
different buffer sizes. He may want to know whether
or not some particular values are enough for this or
that case. Thus, having an architecture model and
particular applications’ implementations, we can an-



alyze the whole model to estimate appropriate buffer
sizes. The same can be done with other system prop-
erties.

2. CONTEXT

2.1 AADL and Behavior Annex
One modelling language supporting both architecture def-

inition and behaviour specification is SAE AADL (Architec-
ture Analysis and Design Language) [11]. It is a standard-
ized language that has several representations for models. It
has a textual representation intended to be used both by hu-
mans and for automated analysis by tools. For very complex
projects and for general overview a graphical representation
of AADL exists. It allows to look at the modelled system,
its components and interconnections without looking at too
much details.

The focus of AADL is on embedded software systems,
specifically for representing the software task and commu-
nication architecture, the execution platform (OS and hard-
ware), and the physical system interface.

The core of AADL is used for defining the whole structure
of the modelled system and for representing main intercon-
nections and relations between components of the model.
AADL models can be extended with different additional
definitions. For example, a component definition can be
extended with description of its possible error states and
ways it manages them [12]. Another standardized extension
allows you to define behaviour of a component using spe-
cialized timed finite state machines (FSM). This extension
is called BA, Behavior Model Annex [10].

AADL models with BA definitions allows to describe both
architectural and behavioural aspects of a modelled control
system.

2.2 MASIW and its universal simulator
MASIW is an open-source framework for development

and analysis of AADL-models. It supports several types
of analysis, both structural and behavioural, static and dy-
namic [8].

MASIW provides a universal model simulator that sup-
ports AADL models with behaviour specification using BA.
Additionally the simulator supports one more way to specify
behaviour of model components: one can use Java classes
that use special simulation library [6]. Using this simula-
tion library, user can define a component behaviour includ-
ing computations, input/output (IO) using ports and buses,
modelling of time consumption and etc.

Thus, at the moment only abstract behaviour specifica-
tions of model components are supported.

2.3 JetOS operating system
JetOS [2] is an ARINC653-compatible open-source op-

erating system. It supports static scheduling of ARINC653
partitions.

For input and output with the outer world (i.e. with par-
titions on other modules and devices), AFDX [3] network is
used mainly. JetOS is configured statically to use appro-
priate virtual links (VL) settings for this or that partitions’
ports.

2.4 QEMU

QEMU [4] is a generic and open source machine emulator.
It supports numerous variants of architectures and hardware
to emulate. It allows to emulate a single machine running
surrounded with particular network servers and services.

Emulation can be controlled by human or by automation.
QEMU has an ability to be managed with GDB (GNU de-
bugger tool) and with special machine-oriented command-
line interface. In particular, running OS can be stopped,
memory and appropriate variables can be observed. Actions
allowing to influence on behavior like memory state update
can be done also. This means that we can change particular
variables of an operating system running inside QEMU.

JetOS supports QEMU as one of target boards it can be
run on. It provides a device driver for the standard virtual
network card provided by QEMU (virtio interface). Thus,
all QEMU facilities for virtual network wiring can be used
with JetOS.

3. PROBLEM
Having AADL models of some control system, we need

to see how it behaves (both functionally and temporally) to
estimate different properties of modelled systems.

For example, we have a requirement on the whole
system that a signal from the engine compressor stall
detector needs to reach its receivers (pilot indicators
and automatic engine power corrector) within known
small period of time.

This signal goes though internal connectivity cir-
cuits and decision taking program components which
can add delays to the signal transferring time.

Estimation of time of moving a signal through the
system is needed to check the requirement using the
system model.

One of possible solutions is simulation of the AADL model
in different cases.

As it was said before, AADL-models can be simulated
with MASIW universal simulator which supports two vari-
ants of behaviour specification, which both are very ab-
stract. But during development of a control system, some of
its parts can be already implemented. In the avionics area,
we can consider ARINC653-applications as such implemen-
tations.

To be able to perform simulation of such models without
extra work, it is good to support the case when behaviour of
model components is defined heterogeneously, i.e. for some
of them we have only abstract behaviour specification (e.g.
using AADL BA timed finite automatons) and for some of
them we have code of ARINC653 partitions that is intended
to be used on-board.

So, the problem is to organize simulation of heterogeneous
models. This implies a need of an easy way to use existing
program code of ARINC653-partitions as behaviour specifi-
cations. Having this, there is a need to be able to simulate
such models to retrieve or estimate behavioural character-
istics of such models (like timing of important signals as in
the example above and other behavioural properties).

4. SOLUTION

4.1 General scheme



It was decided to reuse the existing simulator’s facilities as
much as possible. To do so, it was decided to create a special
Java-behaviour for ARINC653 operating system component
in a model. This behaviour organizes running of JetOS with
appropriate applications in QEMU. ARINC653-partitions
with appropriate applications become software-in-the-loop
which are executed in parallel with the model simulation.

From the simulator’s point of view, this behaviour is a
usual Java behaviour specification which in fact represents a
proxy between one world (simulated by simulator of MASIW)
and the other (emulated by QEMU with running JetOS).

This proxy receives/sends messages from/to QEMU using
network which is used by JetOS for external world IO. Data
coming to a component from a model is translated to binary
representation and vice versa.

This behaviour also is responsible for time synchronization
between simulated model and running JetOS.

You can see overview of the approach on figure 1.

4.2 Time synchronization problem
Since we are talking about software, we consider a discrete

time. This fact imposes upon us to synchronize several in-
dependent executions at the right moments.

The simulator considers the functioning of the simulated
system as a sequence of discrete events. Each event is asso-
ciated with a particular moment of time.

Each JetOS instance running in QEMU has its own local
time that can differ from simulation time of the main AADL-
simulator.

This lack of synchronization leads to wrong time of differ-
ent events appearing in the system. In particular, moments
of appearance of various data in the system can be differ-
ent for sender and receiver. This can lead to errors in time
characteristics estimation and to misbehaving of the mod-
elled system.

So, we should define several points at which each co-
simulated component have to be synchronized with the main
simulator. These points are related with input and output:
all components must be synchronized when software-in-the-
loop is sending data to the rest of the model and vice versa.

To organize this, the special proxy Java behaviour knows
the current time of JetOS and the current simulation time.
It has to know timer frequency of the JetOS instance and
to recalculate it to/from simulation time.

The proxy watches the simulation time. When the simu-
lator attempts to move the current simulation time further
to tnext, it means that no events are going to appear from
the simulated model. The proxy previously ensured that
JetOS local time equals to the current time tcurr of the
simulator.

In this case, proxy behaviour pauses the simulator and al-
lows JetOS to run from time tcurr till time tnext. If JetOS

did not send anything till tnext, proxy
• pauses JetOS when its local time becomes tnext;
• resumes the rest simulator;
• waits until simulator’s current time reaches tnext.

If JetOS has sent something at the moment of time tout <

tnext, the proxy
• stops JetOS at this moment of time (in fact, JetOS

stops itself and reports about this to the proxy);
• reads the binary message from JetOS and translates

it into the model representation;
• sends a message to an appropriate model component;

• resumes the rest simulator to run until tout to manage
the message.

This synchronization allows to receive messages from JetOS

by the rest model exactly at the right moment of simulation
time. Thus JetOS-to-model IO is synchronized.

Model-to-JetOS IO with this approach is also synchro-
nized. It is easy to see because on every message from some
model component to JetOS which is sent at tin, there ex-
ists a moment of time tcurr when tnext = tin and JetOS is
not sending anything between tcurr and tnext. This means
that the proxy behaviour has to simply resend a message to
JetOS as soon as it is received from the simulator.

4.3 OS changes
To perform control and to synchronize real operating sys-

tem time and simulation time, couple of things were needed
to be changed in JetOS.

We wanted to change as less as we can, that is why no
additional control channel was invented. QEMU’s memory
access was considered to be the best way to manage time
management of JetOS.

In JetOS time is represented in ticks where tick time is
the time between successive interrupt controller dispatches.
Ticks count is managed by JetOS itself and is available for
observing with QEMU. ARINC653 calls and other systems
calls use only this time measured in ticks for their work.

So, to control time of the OS running, a single additional
variable was added. Its meaning was the maximum tick that
OS can reach until idling.

Once it becomes less than current time, OS idles and tick
counter stops increasing. This means that time has stopped
from the applications’ point of view.

Once the maximum tick variable becomes more than the
current time, OS runs to the tick stored in this variable.
After resuming, all application behave in a way as if JetOS

was not idling at all.
This variable was intended to be changed by the proxy

behaviour though facilities of QEMU (using GDB or special
interface, as it was described above). Such control allows the
proxy to force the OS time to not to run over the simulation
time.

To prevent the simulation time to run over OS time, this
variable is changed automatically by JetOS each time it
sends something to outside world using network.

Obviously, this approach has a precision of interrupt con-
troller frequency, i.e. we cannot stop JetOS at any moment
of its local time, but only on a value of time which is a
multiple of clock time. But this is considered acceptable be-
cause every message received between successive interrupt
controller dispatches will not be managed until the next dis-
patch. So, this precision is enough to model behaviour cor-
rectly.

4.4 QEMU configuration
QEMU allows to emulate environment of emulated OS,

for example to create internal LAN with appropriate servers
listening and tunneling appropriate connections.

Since networking of JetOS is configured statically and
AFDX uses Ethernet frames with IP and UDP headers, it
allows us to generate automatically configuration of individ-
ual mapping between input or output port of JetOS and ap-
propriate UDP ports in the host machine. Each ARINC653-
port of each partition running inside each particular instance



Figure 1: Overview of the simulator with SIL

of JetOS is forwarded to particular UDP ports of local-
host. This allows to easily receive and send messages by
the proxy Java behaviour without much effort. Knowing a
mapping between local UDP ports and ARINC653-ports of
partitions, we can easily determine to which part of model
this or that message is intended to.

4.5 Binary data transformations
One of the specialities that raised during organization of

such co-simulation is to prepare and to send data to a co-
simulated OS from the model behaviour, we need precisely
modelled data with full informations about size of data ele-
ments in bytes/bits, endianness, padding and etc.

It was realized that in practice models often do not contain
enough data to perform correct binary data generation. This
was not very surprising since models usually have narrowed
representation of reality not containing details that are not
known or not relevant to what the model is targeted to.

But it also was realized that modelling languages some-
times do not provide an ability to put such information into
a model. Also, sometimes we can face a problem of refin-
ing gradually, i.e. adding only relevant information leaving
model to be abstract enough.

As an example, we can look at AFDX frame mod-
elling. Full and structured definition of AFDX frame
takes more than one hundred lines of AADL model
code and more than 30 fields. But in most cases this
full definition is too detailed.

For example, in the basic case (not considering packet
fragmentation) for validation of AFDX network rout-
ing configuration with simulation we need only four
characteristics of AFDX frame (virtual link identity,
sequence number, padding size and payload). In this
case, model of AFDX frame is pretty simple, it con-
tains only of three numbers and payload. If we con-
sider fragmentation, we need to add only three more
numbers and a single boolean value (header size, frag-
ment identity, offset and ‘more fragments’ flag).

Obviously, modelled parts of the whole AFDX frame
data structure are not laying consequently in the bi-
nary representation. They are interleaved with other
fields that are out of consideration in some particular
model.

We have to work around this when performing bi-
nary transformation of AFDX frames models to binary
values.

Obviously, we can say that we can work only with fully
defined data models which can be easily transformed to bi-
nary representation. But this approach much limits the area
of models that can be analyzed with co-simulation when we
sometimes are unable to extend model definition to be full
(thus, no early validation and other things that were dis-
cussed above). Another point against is that this approach
breaks the idea of modelling, i.e. of throwing away of con-
sideration those things that are actually not needed.

But adding only relevant information needed for binary
data transformation runs into not readiness of modelling
approaches. For example, at the moment AADL does not
allow to add offset information conveniently. However it
allows to do it with manual addition of paddings of appro-
priate size between meaningful fields of the data structure.
This allows to solve a problem of ability to transform bi-
nary data going from AADL model to co-simulated OS and
vice versa. But this approach works badly when we need to
refine existing model (containing such paddings) to replace
paddings with fields (when fields now are needed for this or
that model analysis).

5. RELATED WORK

SPADES.

The SPADES simulation engine [9] aims to solve a similar
task. It supports discrete-event simulation with software-in-
the-loop execution.

SPADES is a multi-agent simulator supporting almost ar-
bitrary behaviours for each agent. Generally, this approach
can be used with architecture models by assigning an agent
to each component of the model.

In SPADES each agent acts in a simulation time. Action-
ing of each agent is represented by the following actions:

• sense, i.e. receive some signal or stimulus at some mo-
ment of time;

• think, i.e. consume some simulation time to perform
processing;

• act, i.e. performing some activity touching other agents.



During thinking an agent can perform calculations and
request simulation time notification, i.e. agent can say that
it is going to continue only at particular moment of time.
This is used for modelling of time consumptions when agent
behaviour is an abstract behaviour.

Software-in-the-loop feature of SPADES is the following.
When some agent is not a model behaviour but a real piece
of software, it obviously do not have any time notification
requests. To include such software into the loop, SPADES
performs CPU time consumption measurement during ex-
ecution of real software and uses this time as if it was re-
quested by this agent.

This approach uses two notions of time: simulation time
and real time system running a simulation. This approach
works well when the target executor of a software is the same
as one performing simulation.

But it is not working for responsible control systems be-
cause usually they use time-deterministic operating systems
and deterministic scheduling. Usage of real time of an op-
erating systems that performs a simulation does not give
correct estimates on time consumptions of software com-
ponents. Thus, SPADES-like approach for software-in-the-
loop simulation is not applicable for analysis of models of
responsible control systems with heterogeneous behaviour
specification.

The FALTER case.

A software-in-the-loop simulation approach was used in
the FALTER project testing [5].

In the FALTER project an autonomous unmanned aerial
vehicle was developed. It was intended to automated indoors
exploration of buildings after an accident.

After the software responsible for the sophisticated logic
of the vehicle was developed, software-in-the-loop simulation
was used to put this software into different interesting cases
to see whether it manages the situation or not.

A special test framework was developed for this. This
framework contained an environment and platform models
and allowed to specify a test case (with definition of partic-
ular obstacles and sensors noise). These models were repre-
sented as Simulink blocks.

This approach of modelling seems to work very well for
small systems with relatively small count of sensors and ac-
tuators tested as a whole. It looks like this approach is hard
to apply to complex systems with interconnected compo-
nents when some of them already have their implementation
and some other are defined in abstract way.

6. CONCLUSION
Architecture models are widely used in development of

complex responsible control systems like avionics. They can
be used for the system-wide analysis before implementation
of parts of a system.

After partial implementation of software components or
during integration of the system, system-wide properties of
the system must be checked again.

Methods that are using already developed architecture
models with already implemented software components al-
low to make the analysis of several properties of the system

much easier. There is no need to develop additional inte-
gration checks because architecture models already contain
requirements that need to be checked.

Simulation of architecture models with abstract behaviour
definitions supporting software-in-the-loop execution is one
of such methods. It allows to check behaviour of the whole
system when some software parts are fully implemented while
others have only abstract behaviour definition inherited from
early stages of development.

One particular implementation applicable in avionics area
is considered. AADL and its standard extensions are used
as architecture and abstract behaviour modelling language.
ARINC653-applications can be used as software-in-the-loop
during simulation. This is considered to be useful for pur-
poses of analysis of whole system properties on early stages
of development and during system integration.
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